Fitting a bivariate additive model by local polynomial regression
نویسندگان
چکیده
منابع مشابه
Fitting a Bivariate Additive Model by LocalPolynomial Regression
While the additive model is a popular nonparametric regression method, many of its theoretical properties are not well understood, especially when the back tting algorithm is used for computation of the the estimators. This article explores those properties when the additive model is tted by local polynomial regression. Su cient conditions guaranteeing the asymptotic existence of unique estimat...
متن کاملWeighted Local Polynomial Regression, Weighted Additive Models and Local Scoring
This article describes the asymptotic properties of local polynomial regression estimators for univariate and additive models when observation weights are included. The implications of these ndings are discussed for local scoring estimators, a widely used class of estimators for generalized additive models described in Hastie and Tibshirani (1990).
متن کاملLocal Polynomial Fitting: A Standard for Nonparametric Regression!
Among the various nonparametric regression methods, weighted local polynomial fitting is the one which is gaining increasing popularity. This is due to the attractive minimax efficiency of the method and to some further desirable properties such as the automatic incorporation of boundary treatment. In this paper previous results are extended in two directions: in the one-dimensional case, not o...
متن کاملMultivariate Regression Estimation : Local Polynomial Fitting for Time Series
We consider the estimation of the multivariate regression function m (x 1 , . . . ,xd) = E [ψ (Yd) | X 1 = x 1 , . . . ,Xd = xd], and its partial derivatives, for stationary random processes {Yi ,Xi} using local higher-order polynomial fitting. Particular cases of ψ yield estimation of the conditional mean, conditional moments and conditional distributions. Joint asymptotic normality is establi...
متن کاملLocal Regression Based Statistical Model Fitting
Fitting statistical models is a widely employed technique for the segmentation of medical images. While this approach gives impressive results for simple structures, shape models are often not flexible enough to accurately represent complex shapes. We present a fitting approach, which increases the model fitting accuracy without requiring a larger training data-set. Inspired by a local regressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1997
ISSN: 0090-5364
DOI: 10.1214/aos/1034276626